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Abstract—The recently introduced network equivalence results
are used to create bit-pipe models that can replace multi-terminal
channels within a discrete memoryless network. The goal is to
create a set of simple “components” or “blocks” that can be
substituted for the channel in such a way that the resulting
network is capable of emulating the operation of the original
one. We develop general upper and lower bounding models for
the multiple access channel and for a class of broadcast channels.
These bounds are sharp in the sense that there exists networks
where the original channel can achieve the maximum sum rate
permissible through the upper or lower bounding models. This
approach provides a simple method for analyzing the capacity
of large networks, which we illustrate with an example.

I. INTRODUCTION
While a full characterization of the fundamental limits of

general communication networks is still out of reach, several
tools have been recently introduced to approach this problem
(e.g., [1]–[3]). Nevertheless, the set of achievable rates and the
optimal operation strategy of even simple networks, such as
the three node relay channel, are unknown except for specific
cases [3], [4].
In [3]–[5], Koetter et al. introduced the concept of network

equivalence. Two networks are said to be “equivalent” if any
set of demands that can be met on one network can be met
on the other network, and vice-versa. They also introduced the
notion of bounding networks in that work. One network is said
to “bound” another if any set of demands that can be met on
the first network can also be met on the second. (In this case
the first network lower bounds the second, or, equivalently, the
second upper bounds the first.)
The key advantage of this approach is that it does not explic-

itly find the capacity region of a given network, but relates it to
the capacity region of another distinct network whose capacity
can be easier to derive. This method is especially interesting
when one of the networks is comprised entirely of noiseless bit
pipes, since it abstracts the stochastic relationship between the
signals transmitted by the nodes of the network. As a result,
only the inherent combinatorial network coding problem must
be solved in order to describe the set of achievable rates.
The first network equivalence result, introduced in [3], can

be stated as follows: If a network is composed entirely of
memoryless, noisy, point-to-point links, the set of achievable
demands remains unaltered if each noisy link is substituted
by a noiseless bit pipe with throughput equal to the capacity
of the corresponding noisy channel. Unfortunately, such a
result does not hold for networks that contain multi-terminal
channels, which comprise most of the cases of interest in
wireless systems. In [4], [5], Koetter et al. address this issue

by investigating upper and lower bounding bit-pipe models for
multi-terminal channels. Here, an upper (lower) bounding bit-
pipe model for a channel is a collection of bit pipes such that
replacing the channel by its bit-pipe model in any network that
contains it yields a new network whose capacity region is a
super-(sub-) set of the capacity region of the original network.
Again, this reduces the challenge of bounding the capacity
region to its combinatorial core.
In this paper, we introduce a new approach to designing bit-

pipe bounding models. The “one-shot” emulation argument
developed in this work simplifies the process of deriving
upper bounding models and thereby simplifies the derivation of
network capacity bounds. Unlike some of the prior approaches
(e.g., [1], [2]), it can be applied to any network composed
of independent, memoryless channels under any family of
demands.
The use of bounding models provides a systematic and

straightforward method to bound the capacity region of a
general network. Examining network codes for the bounding
network provides insight on how to perform network coding
on the original network. The results are generally tighter than
cut-set bounds and this approach applies more broadly than
generalizations of the cut-set approach (e.g., [6]).
The rest of the paper is organized as follows. Section II

presents the problem setup. In Section III, a constraint on the
total sum rate through an upper bounding bit-pipe model is
introduced. This constraint is a necessary condition for the
model to be a valid upper bound for a discrete memoryless
multi-terminal channel within an arbitrary network. In Section
IV, the “one-shot” emulation argument is used to develop a
family of bit pipe models that can replace the multiple access
channel and a class of broadcast channels within a general
network in a bounding sense. Finally, Section V provides
a numerical example on how to apply the developed bit-
pipe models to a specific network. Concluding remarks are
presented in Section VI.

II. PROBLEM SETUP

We consider the setup introduced in [3], [5] and follow the
notation of [7]. A discrete-time network N is composed of
m nodes, denoted by the set V = {1, ...,m}. Each node i
is associated with random variables X(i) ∈ X (i) and Y (i) ∈
Y(i), corresponding to channel inputs and received symbols,
respectively. We assume that the network is memoryless and
is characterized by the conditional transition probability:

p(y|x) = p(y(1), . . . , y(m)|x(1), . . . , x(m)) .
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In order to simplify notation, we assume that each node is
connected to only one input channel and one output channel.
All of the results presented here immediately extend to the
more general case. Each node v ∈ V uses a code of block
length n with the goal of communicating for each U contained
in the power set of V\{v}, here denoted by P(V\{v}),
the message W {v}→U ∈ W{v}→U ! {1, . . . , 2nR({v}→U))}.
The messages are independent and uniformly distributed by
assumption. A vector of multicast rates R ! {R({v}→U) :
(v, U) ⊆ V × P(V\{v})} is said to be achievable if all
the messages can be decoded with arbitrarily small error
probability. For more details on the setup, we refer the reader
to [3]–[5].
The network N contains an independent channel Ci denoted

by

Ci =





∏

v∈Vi,1

X (v), pi(yi|xi),
∏

v∈Vi,2

Y(v)



 ,

where yi = (y(j) : j ∈ Vi,2) and xi = (x(j) : j ∈ Vi,1),
Vi,1,Vi,2 ⊆ V , Vi,1 ∩ Vi,2 = φ if

N =

(

∏

v∈V

X (v), p0(y0|x0)pi(yi|xi),
∏

v∈V

Y(v)

)

,

where y0 = (y(i) : i /∈ Vi,2), x0 = (x(i) : i /∈ Vi,1). In other
words, the channel Ci can be “decoupled” from the rest of the
network. As in [3], we represent the stochastic behavior of the
rest of the network by C0, and denote N = C0 × Ci.
Let R(N ) = R(C0×C1) denote the closure of the set of all

rate vectors achievable by the network N . Let C2 be a discrete,
memoryless, multi-terminal channel with the same number of
inputs and outputs as C1. We say that C2 lower bounds C1, or,
equivalently, C1 upper bounds C2, ifR(C0×C2) ⊆ R(C0×C1).
In the following sections, we will refer to upper and lower
bounding structures composed entirely of noiseless bit pipes1
as Su and Sl, respectively, and denote noisy multi-terminal
channels as Ci for some subscript i. We represent the bounding
relation by Sl ⊆ Ci ⊆ Su.

III. BOUNDING MODELS COMPOSED OF BIT-PIPES
Any point in the capacity region of an isolated multi-

terminal channel with independent inputs (i.e., a multi-terminal
channel not within a larger network) can serve as a lower
bound Sl since operating a channel code across this channel
within a network makes it behave essentially as a lossless link
[4]. The following theorem shows that any upper bounding bit-
pipe model for a multi-terminal channel has a total sum rate
at least as large as the total achievable rate over the channel
when the receivers and transmitters are allowed to cooperate.
We note that this does not define an equivalence between

the models. However, this bound is sharp in the sense that
a network exists that contains the multi-terminal channel and
can achieve the total sum rate delimited by the upper bound.

1We make the common assumption that a bit-pipe might have a non-integer
capacity [4].
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Fig. 1. (a) General multi-terminal channel. (b) Corresponding point-to-point
equivalent model.

Theorem 1. Let C1 =
(
∏mI

i=1 X (i), p1(y|x),
∏mO

i=1 Y(i)
)

be a
multi-terminal channel with mI inputs and mO outputs. In
addition, let Su be a network comprised of noiseless point-to-
point bit pipes with mI inputs and mO outputs. If C1 ⊆ Su,
then the total sum rate achievable through Su, denoted by
CSu

, satisfies:

CSu
≥ max

p(x1,...,xmI
)
I(X1, . . . , XmI

;Y1, . . . , YmO
) (1)

Remark. It might be tempting to try to use cut-set bounds [7,
Theorem 15.10.1] to prove the previous theorem, following a
similar approach to the one presented in [8]. However, since
it is unclear from cut-set bounds alone which general sets of
demands are and are not achievable for an arbitrary network,
this would guarantee that the cut-set outer bound of the region
remains unaffected but not guarantee that the achievability
region of the bounding model includes the one of the original
network. For that, we need to use a simple emulation argument
and resort to the point-to-point equivalence theorem introduced
in [3], as shown below.

Proof: Consider a noisy bounding model C2 composed
of a network with mI input nodes, two intermediate nodes
nI,1 and nI,2, and mO output nodes, depicted in Fig. 1.
The input nodes are connected to nI,1 by noiseless links,
each with capacity log |X (i)|, i = 1, . . . ,mI . In turn, the
output nodes are connected to nI,2 by noiseless links with
capacity log |Y(i)|, i = 1, . . . ,mO. The intermediate nodes
are connected by a discrete memoryless channel with a vector
input [X1, . . . , XmI

] and a vector output [Y1, . . . , YmO
], where

xi ∈ Xi, yj ∈ Yj . In addition, this channel has the same
transition probability as C1 but the inputs and outputs are here
considered as vectors, i.e.,

p2([y1, . . . , ymO
]|[x1, . . . , xmI

]) = p1(y|x) .

Clearly, any coding strategy used in the original channel can
be emulated by the input and output nodes of C2 by imposing
that the intermediate nodes simply forward their corresponding
inputs. Therefore, C1 ⊆ C2 for any network N . In addition,
from the point-to-point equivalence result introduced in [3],
the link between the intermediate nodes can be substituted by
a noiseless bit pipe with capacity CSu

. The resulting bit-pipe
model, denoted by Su, then also satisfies C1 ⊆ Su.
In addition, a network always exists that can achieve the

total maximum sum rate CSu
through any multi-terminal

channel. This can be done by a network which allows all
transmitting nodes to cooperate for encoding and all receiving
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Fig. 2. (a) Discrete memoryless N transmitter multiple access channel. (b)
Corresponding bounding model for the N transmitter MAC.

nodes to cooperate for decoding. Therefore, any noiseless bit-
pipe upper bounding model for C1 has to be able to achieve a
total sum rate at least as large as CSu

.

IV. POINT-TO-POINT BOUNDS FOR MULTIPLE ACCESS
CHANNELS AND FOR A CLASS OF BROADCAST CHANNELS

In the following sections we introduce upper bounding
models for the multiple-access and broadcast channels based
on a “one-shot” approach, i.e., where the upper bounding
network can emulate exactly the lower bounding network at
each time step. Even though this approach might seem crude
at first, it provides good results in different practical cases, as
well as an effective method for bounding the capacity region
of large, heterogenous networks. This procedure determines
general upper bounds that are sharp in the sense described in
Theorem 1.

A. Multiple access channels
Let CMAC be an N user discrete memoryless

multiple access channel defined as CMAC =
(
∏N

i Xi, p(y|x1, . . . , xn),Y) with channel inputs
X1, X2, . . . , XN and output Y , depicted in Fig. 2(a).
We can create a point-to-point upper bounding model for the
MAC shown in Fig. 2(b), where l1, . . . , lN , lS are noiseless bit
pipes with capacity Rli and nI is an intermediate node. This
bounding structure is denoted by S = (Rl1 , . . . , RlN , RlS ).
We can bound the total information flow through this

channel by considering that the bit pipe represented by lS is a
point-to-point channel with inputs X = (X1, . . . , XN ), output
Y and transition probability p(y|x) = p(y|x1, . . . , xn). As in
Theorem 1 the point-to-point capacity of lS is equivalent to
the maximum rate achievable by the MAC with cooperation
among the transmitters, given by:

CS = max
p(x1,...,xN )

I(Y ;X1, . . . XN ) . (2)

The resulting bound is Su,1 = (log |X1|, . . . , log |XN |, CS).
As discussed previously, this bound is sharp.
The previous approach allows us to bound the total informa-

tion flow through the MAC, but it does not offer insight on how
to find bounds for the maximum transmission rates from the
individual users. In order to bound l1, . . . , lN , we can explore
certain properties of the transition probability p(y|x1, . . . , xn).
This can be done by modeling l1, . . . , lN as point-to-point
noisy channels, with outputs that can be combined by the
intermediate node nI in such a way as to allow the emulation
of the transition probability p(y|x1, . . . , xN ).

In particular, assume that there exists a sequence of transi-
tion probabilities p1(z1|x1), . . . , pN (zN |xN ), where xi ∈ Xi

and zi ∈ Zi for all i, and a function g(z1, . . . , zN) such that
g : Z1 × · · ·× ZN → Y and

p(y|x1, . . . , xN ) =
∑

z1,...,zN :
g(z1,...,zN )=y

N
∏

i=1

p(zi|xi). (3)

At each discrete time step, we can emulate the exact marginal
probability of the original MAC by imposing that the inter-
mediate node forwards the value of g(z1, . . . , zN). Therefore,
we can substitute each noisy point-to-point link by a noiseless
bit pipe of equal capacity. This results in the upper bounding
model Su,2 = (C1, C2, . . . , CN , log |Y|) where

Ci = max
p(xi)

I(Zi;Xi), i = 1, . . . , N. (4)

We shall now illustrate these results by presenting bounds
for the Gaussian and binary additive multiple access channels.
1) Gaussian MAC: Consider a Gaussian MAC with output

Y = a1X1 + a2X2 + Z , where Z ∼ N (0, N), |a2i | < 1 and
power constraints E[X2

i ] < Pi for i = 1, 2. Using the graph
in Fig. 2(b) and the previous approach, we can model l1 and
l2 by two independent (noisy) Gaussian channels, with noise
variances αN and (1 − α)N , respectively.
The value of α can be chosen in order to minimize the total

sum rate through l1 and l2, i.e.

α∗ = argmin
[(

1 +
SNR1

α

)(

1 +
SNR2

(1− α)

)]

, (5)

giving

α∗ =

(

1 +

√

SNR−1
1 + 1

SNR−1
2 + 1

)−1

, (6)

where SNRi = |ai|2Pi/N . In addition, the total sum rate can
be bounded by the maximum cooperation rate as in (2), i.e.
CS,MAC = γ((

√
SNR1+

√
SNR2)2), where γ(x) = 1

2 log(1+
x). The resulting upper bounding models for this case are
Su,1,MAC = (∞,∞, CS,MAC) and

Su,2,MAC =

(

γ

(

SNR1

α∗

)

, γ

(

SNR2

1− α∗

)

,

γ

(

SNR1

α∗

)

+ γ

(

SNR2

1− α∗

))

. (7)

The lower bounding bit-pipe model is given by the capacity
region for the independent MAC, which is simply:

Sl,MAC = (γ (SNR1) , γ (SNR2) , γ (SNR1 + SNR2)) . (8)

The gap between the maximum sum rate of the upper and
lower bounding models, measured in bits per channel use, is:

∆MAC =
1

2
log

(

1 +
2
√
SNR1SNR2

1 + SNR1 + SNR2

)

≤ 1

2
. (9)

This difference is much smaller at low SNR. Note that, for the
channel in isolation, it follows directly that feedback and user
cooperation can increase the maximum sum-rate through the
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two user Gaussian MAC channel in at most 1/2 bit, and this
gain is much smaller at low SNR. We highlight that this well
known gap [9] was proved directly from network equivalence
results and a simple emulation argument, without the need of
any additional proofs.
2) Binary MAC: Consider a binary additive MAC channel,

with binary inputs X1, X2 and output Y = X1 ⊕ X2 ⊕ Z ,
where Z is a Bernoulli random variable with parameter ε and
⊕ denotes the XOR operation. Going over the same steps taken
for the Gaussian MAC and using the same upper bounding
structure, the sum rate of the links from the transmitting nodes
to the intermediate node can be modeled as binary symmetric
channels with parameters ε1 and ε2, with the given constraint
that ε1 ∗ ε2 = ε. The sum capacity C1 + C2 = 2 −H(ε1) −
H(ε2) of the branches is minimized at ε1 = ε2 = ε∗ = 1

2 (1−√
1− 2ε).
The sum rate, in turn, can be bounded by 1−H(ε). It follows

that the corresponding upper bounding bit-pipe structures are
Su,1,MAC = (1, 1, 1−H(ε)) and Su,2,MAC = (1−H(ε∗), 1−
H(ε∗), 2).
The lower bounding sum rate restriction for this channel is

also 1 − H(ε), and, consequently, cooperation and feedback
cannot increase the total rate achieved by a binary symmetric
MAC. This, of course, is expected, since the capacity of the
considered MAC is limited by a binary symmetric channel,
which cannot achieve a throughput larger than 1 − H(ε)
regardless of the input strategy.

B. Broadcast channels with independent noise
We now turn our attention to a class of two-user discrete

memoryless broadcast channels CBC = (X , p(y1, y2|x),Y1 ×
Y2) displayed in Fig. 3(a). We assume that the transition
probability can be factored as p(y1, y2|x) = p(y1|x)p(y2|x).
Consider the “equivalent” model presented in Fig. 3(b), com-
posed by an intermediate node nI and three links, lS , l1 and
l2, with capacities denoted by S = (RlS , Rl1 , Rl2). A lower
bounding model SL can be found by setting RlS = log |X |,
and choosing Rl1 and Rl2 as a known operating point of the
broadcast channel. For example, Rl1 and Rl2 can be chosen
as an operating point that maximizes the total sum rate for the
channel in isolation.
Analogously to the procedure taken for the MAC channel,

an upper bound Su,1 can be found by defining B1 and B2 as
the maximum achievable individual rates when the broadcast
channel is operated as two point-to-point channels. We denote
this upper bound as Su,1 = (log |X |, B1, B2), where Bi,
i = 1, 2, is the capacity of the point-to-point channel Cyi

=
(X , p(yi|x),Yi) and p(yi|x) is the corresponding marginal
transition probability of p(y1, y2|x).
Another upper bounding model is given by modeling

l1 as a two-look point-to-point channel, defined as Cy =
(X , py(y|x),Y), where y = (y1, y2), Y = Y1 × Y2

and py((y1, y2)|x) = p(y1, y2|x). Denoting the capacity of
Cy by By, the corresponding bound is given by Su,2 =
(By, log |Y1|, log |Y2|) or, equivalently, Su,2 = (By, By, By).
We shall illustrate these results with two examples.

X

Y1

Y2

p(y1, y2|x)

(a)

b

X1

Y

lS
l1

l2

nI

(b)

Fig. 3. (a) Two user discrete memoryless broadcast channel. (b) Bounding
model for the two user BC.

1) Gaussian broadcast channels with independent noise:
Consider the Gaussian broadcast channel Y1 = a1X + Z1,
Y2 = a2X + Z2 and Zi ∼ N (0, Ni), i = 1, 2, Z1 ⊥⊥ Z2 and
E[X2] ≤ P . It is straightforward to show that the two upper
bounding bit-pipe models in this case are

Su,BC,1 = (γ (SNR1) + (SNR2) , γ (SNR1) , γ (SNR2))
(10)

and, given CS,BC = γ (SNR1 + SNR2), Su,BC,2 =
(CS,BC , CS,BC , CS,BC) where SNRi = |ai|2P/Ni, i = 1, 2.
Considering that SNR2 < SNR1, for any 0 ≤ β ≤ 1 a lower
bound for the channel is the maximum rate achievable by
using superposition coding and decoding independently at the
receivers:

Sl,BC =

(

∞, γ (βSNR1) , γ

(

(1− β)SNR2

βSNR2 + 1

))

. (11)

The gap between the total sum rate achievable by the upper
bound Su,BC,2 and the lower bounding model, measured in
bits per channel use, is:

∆BC =
1

2
log

(

1 +
SNR2

SNR1 + 1

)

≤ 1

2
. (12)

It also follows that, for the channel in isolation, feedback and
cooperation among the receivers can increase capacity in at
most 1/2 bit/channel use, and at considerably smaller values
at low SNR. Once again, this known result (e.g. [10]) was
obtained directly from the point-to-point network equivalence
theorem and some additional analysis.
2) Binary symmetric broadcast channels with independent

noise: A binary symmetric broadcast channel is defined as
Y1 = X ⊕ Z1 and Y2 = X ⊕ Z2, where X,Z1 and
Z2 are binary and Z1 and Z2 are independent Bernoulli
random variables with parameters p1 and p2, respectively,
0 < p1 < p2 < 1. The upper bounding structure can be easily
calculated as Su,BC,1 = (RBSS,1+RBSS,2, RBSS,1, RBSS,2)
and Su,BC,2 = (RBSS,y, RBSS,y, RBSS,y), where

RBSS,y = 1 +H(p1 ∗ p2)−H(p1)−H(p2)

RBSS,1 = 1−H(p1) (13)
RBSS,2 = 1−H(p2)

and p1 ∗ p2 = p1(1 − p2) + p2(1 − p1). The lower bounding
model for this scheme is Sl,BC = (1, H(β ∗ p1)−H(p1), 1−
H(β ∗ p2)) for some 0 ≤ β ≤ 1. The maximum gap between
the total sum rate through the lower bower and upper bounding
model in bits/channel use is:

∆BC = H(p1 ∗ p2)−H(p2) ≤ 0.215. (14)

2011 IEEE Information Theory Workshop

373



n1

n4

n3

n2

n5

p1(y2|x1, x5)

p3(y4, y5|x3)

p2(y3|x1, x2)

p
4
(y

1
|x

4
)

Fig. 4. Example network.
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Fig. 5. (a) Lower bounding network. (b) Upper bounding network. The white
nodes represent added intermediate nodes. Note that in (a) nodes n3 and n8

could be collapsed together.

The value of ∆BC decreases sharply for values of p1 and p2
near 0, which indicates that, for channels with small crossover
probabilities, feedback and cooperation among decoders does
not significantly increase the achievable sum rate.

V. NUMERICAL EXAMPLE
In order to illustrate the procedure of bounding a network’s

achievable rate region using the derived models, we now turn
our attention to the network depicted in Fig. 4. This network
is composed by nodes ni, i = 1, . . . , 5, two multiple access
channels, one broadcast channel and one point-to-point link.
The input/output of node ni at a given instant is represented
as (xi, yi), and the corresponding transition probabilities are
indicated in the figure and are independent among themselves.
This network can represent, for example, a heterogenous
wireless sensor network.
The transition probability p1(y2|x1, x5) corresponds to a

binary MAC, as described in Section IV-A, where the additive
noise is Bernoulli with parameter ε1 = 0.11. Furthermore, let
the transition probability p2(y3|x1, x5) represent a Gaussian
MAC where the average received SNR from nodes n1 and
n2, defined in Section IV-A and denoted by SNR1 and SNR2,
respectively, are SNR1 = 2 and SNR2 = 4.
In addition, let the broadcast channel with transition prob-

ability p3(y4, y5|x3) also be Gaussian, where the average
received SNR by nodes n4 and n5, as defined in Section IV-B,
is given by SNR4 = 1.6 and SNR5 = 0.8, respectively. Fi-
nally, let the point-to-point channel with transition probability

p4(y1|x4) also be a binary symmetric channel with crossover
probability ε4 = 0.05.
It is difficult to analyze the capacity of this network using

standard methods such as cut-set bounds without laborious
computations. Using the family of bounding structures derived
in Section IV, we can immediately find the lower and upper
bounding networks depicted in Fig. 5(a) and 5(b). All the
values are given in terms of bits/channel use. Nodes n6, n7

and n8, marked in white, represent added intermediate nodes
for each bounding model.
Note that each point-to-point lower bounding bit pipe leav-

ing an added intermediate node is less than 1/2 bit away
from the corresponding upper bounding bit pipe. In addition,
this method clearly illustrates the possible losses of decoding
and forwarding at each node instead of using a cooperative
coding/decoding scheme and the available feedback. This ex-
ample highlights the key advantage of the network equivalence
approach: substituting the channels of a network by their
corresponding bounding components is a powerful yet simple
method for capacity analysis. The benefits of this approach
become even greater for larger networks.

VI. CONCLUSION
We used network equivalence results to create a system-

atic procedure for bounding the capacity of large networks
that include multi-terminal channels. This method consists
of substituting each multi-terminal channel by an appropriate
model composed by bit pipes. We have derived a family of
sharp bounds for the MAC and a class of broadcast channels,
and illustrated how they can be applied through a numerical
example. The presented method can be easily extended in
order to encompass other channel models.
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